Question 1	2 pts
Consider the structural formula of phenol.	
OH I	
\bigcirc	
The active ingredient in some oral anesthetics used in so molar mass of phenol?	re throat sprays. What is the
 89 g/mol 47 g/mol 	
17 g/mol	
94 g/mol	
─ 50 g/mol	
Question 2	2 pts
This is the condensed structural formula for acetaminoph	en, the active ingredient in the
over-the-counter medication Tylenol. H	
но	
What is the molecular formula of acetaminophen?	
C ₈ H ₅ NO ₂	
C ₈ H ₉ NO ₂	
C ₈ H ₁₁ NO ₂	
C ₈ H ₈ NO	
Question 3	1 nto
	1 pts
The following structure is the carbon skeleton for a struct	ural isomer of octane with most
of the hydrogen and carbon atoms omitted.	
H ₃ C CH ₃	
H ₃ C	
What is the molecular formula of this isomer?	
○ C ₈ H ₁₆	
○ C ₈ H ₂₄	
○ C ₈ H ₈	
○ C ₈ H ₁₈	
Question 4	2 pts
Consider the following structure:	
H_2C	
How many single bonds, double bonds, sigma bonds, and represented by this condensed formula?	d pi bonds (respectively) are
15, 4, 15, 4	
11, 7, 18, 7	
12, 4, 12, 4	
12, 4, 16, 4	
15, 4, 19, 4	
Outootiers 5	
Question 5	1 pts
The electronegativity of H is	
a lot less than that of C.	
 about equal to that of C. 	

a lot more than that of C.

Which pair of bonded atoms has the largest dipole moment?		
○ C-CI		
○ C-F		
○ C-O		
○ C-N		

Question 7	1 pts

Consider a 3-atom molecule A-B-A for which B has a total of only four valence electrons enough to make two bonds. Predict the A-B-A bond angle.

○ 109.5°			
○ 120°			
○ 90°			
○ 180°			

Question 8	1 p	ots

What is the shape (molecular geometry) of COCl₂?

- tetrahedral
- T-shaped
- trigonal planar
- trigonal pyramidal

Question 9

2 pts Which of the following has bond angles slightly LESS than 120°? $\bigcirc O_3$ \bigcirc SF₂ \bigcirc SO₃ ○ NO₃⁻ ○ I₃⁻

Question 10 1 pts Draw the Lewis structure for NO_2^- . How many single bonds, double bonds, triple bonds, and unshared pairs of electrons are on the central atom, in that order, when considering a single contributing structure (ignoring the averaging effects of resonance)? 0, 0, 1, 1 0 4, 0, 0, 0 2, 0, 0, 2 1, 0, 1, 0

\bigcirc	1,	1,	0,	1	

Question 11	1 pts
Determine the molecular geometry of the ion NO ₂ ⁻ .	
 trigonal planar 	
 trigonal pyramidal 	
on none of these	
Iinear	
◯ bent or angular	
 bent or angular 	

Question	12
----------	----

What is the electronic geometry of IF_4 ?

square pyramidal

- octahedral
- o square planar
- trigonal bipyramidal
- tetrahedral

1 pts

1 pts

1 pts

2 pts

Question 13 1 pts What is the molecular geometry of IF_4^- ? square pyramidal trigonal planar see-saw octahedral

o square planar

Question 14

Is IF₄⁻ non-polar?

- It cannot be determined from the structure.
- Yes, it is non-polar.
- No, it is polar.

Question 15

What is the geometry around the left-most carbon in the molecule CH₂CHCH₃?

- tetrahedral
- trigonal pyramidal
- ◯ linear
- trigonal planar

Question 16

Which of the following has bond angles of 90°, 120°, and 180°?

O ICl₄⁻

- SF₄
- XeF₄
- IF₅
- $\bigcirc \mathsf{PF}_6^-$

Question 17

A central atom is surrounded by four chlorine atoms. Which of the following combinations is possible?

- a trigonal bipyramidal electronic geometry and seesaw molecular geometry
- O a trigonal bipyramidal electronic geometry and t-shaped molecular geometry
- an octahedral electronic geometry and tetrahedral molecular geometry.
- an octahedral electronic geometry and square pyramidal molecular geometry

Question 18

Consider the compound peroxyacetylnitrate, an eye irritant in smog.

0 		\circ	+~	\sim
	0		Ň/	U.
	Ŭ		1	ĸ
			O^{-}	

Predict the indicated bond angle.

 $\bigcirc\,$ slightly less than 120°

- 109.5°
- 120°
- 90°

Slightly less than 109.5°

1 pts

1 pts

1 pts

(\bigcirc	CCl ₄
(\bigcirc	CO ₂

Question 19

- XeF₂
- SF₄
- SO3

Question 20

1 pts

1 pts

2 pts

1 pts

Which of the following statements about polarity is FALSE?

- Linear molecules can be polar.
- O Polar molecules must have a net dipole moment.
- C Lone (unshared) pairs of electrons on the central atom play an important role in influencing polarity.
- \bigcirc CF₄ is a polar molecule.
- O Dipole moments can "cancel," giving a net non-polar molecule.

Question 21

Which of the following molecules is nonpolar?

- CH₃Br
- \bigcirc H₂O
- \bigcirc SO₂
- NF₃
- \bigcirc BF₃

Question 22

CHF₃ is (less, more) polar than CHI₃ because...

 \bigcirc less, the C-H bond in CHF₃ is a nonpolar bond.

- O less, the tetrahedral geometry decreases the polarity of C-F bonds.
- \bigcirc more, the C-H bond in CHF₃ is a nonpolar bond.
- more, the C-F bonds are more polar than the C-I bonds.
- $\bigcirc\,$ less, the three polar C-F bonds are symmetrical and cancel the dipole moments.

Question 23

Which of the following molecules contains polar covalent bonds but is NOT itself a polar molecule?

1 and 3 only

- 2 only
- none fit the criteria
- 2 and 3 only
- 3 only
- 1, 2, and 3
- 1 and 2 only

Question 24

1 pts

Which of the following molecules has the largest dipole moment?

- \bigcirc HI
- \bigcirc H₂
- 🔘 HBr
- $\bigcirc F_2$